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Properties of the n-Body Correlation 
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We investigate the behavior of the many-body correlation functions in the 
vicinity of the gas-liquid critical point. We use the framework of the liquid state 
theory and, accordingly, no reference to an effective Landau-Ginzburg 
Hamiltonian is made. The critical condition is introduced by means of the equa- 
tion of state. From the Baxter equation relating the many-body correlation 
functions h(n) and h(n + 1 ), we find that the integrals of all the h(n) diverge at 
the critical point. Then we present strong arguments and this leads to GKS-like 
inequalities, under some limiting conditions: the interparticle distances must be 
large and the thermodynamic state of the system must be close to the critical 
point. In order to get these inequalities, an upper bound for h(n) is obtained. 
Particular attention must be paid to the fact that the usual asymptotic 
approximations of the liquid state theory are no longer valid. 

KEY WORDS: Critical phenomena; many-body correlation functions; 
correlation inequalities. 

1. I N T R O D U C T I O N  

The  usua l  way  to descr ibe  the s t ruc ture  of  a o n e - c o m p o n e n t  fluid, accord-  
ing to l iqu id  state theory ,  is to use the set o f  n -body  d i s t r ibu t ion  funct ions  

pln~( 1, 2 ..... n) which  gives the p robab i l i t y  of  f inding the n molecu les  labeled  

( 1, 2 ..... n) in a g iven state,  cha rac te r i zed  by thei r  pos i t ion  and  thei r  o r ien ta -  
t i o n /  1) Hereaftel; ,  we shall  cons ide r  on ly  the case o f  spher ica l  molecu les ,  

in te rac t ing  via  t w o - b o d y  pa i rwise  addi t ive  po ten t ia l ,  and  only  the pos i t ions  

of  the molecu les  are  involved.  T h e  n -body  d i s t r ibu t ion  funct ions  are  re la ted  

to the co r r e l a t i on  funct ions ,  which  can  be  separa ted  into  two  types: the 
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total, h t'), and the direct, c ~"), correlation functions. The functions 
h t') =h(1 ..... n) are defined as functional derivatives of the grand potential 

with respect to the activities z(i), ~ 

p( l )  ..- p(n)  h (') = z( 1 ) . . .  z(n)['~" Ln S/~z(1 ) . . .  d~z(n) ] 

and the functions ct")=c(1 ..... n) are defined as functional derivatives of 
A .. . .  which is the excess part of the intrinsic free energy A: Aexr = 
- f l -  'c[ p ] = A - A ideal, with respect to the densities p(i),~ 

c ~") = - f l [ 6 " A ~ x r  Op(n)] 

= 6 " c [ p ] / ~ p ( 1 ) . . . @ ( n )  

For our analysis we give an alternative and equivalent definition in terms 
of a graph representation"l: h ~''~ is the sum of all simple diagrams free of 
articulation points with n white circles, p black circles, and f bonds, where 
f i s  the Mayer functions; c ~"~ is the sum of all simple diagrams with n white 
circles, p black circles, and f bonds and which are free of nodal points. 

However, in the vicinity of the critical point, other theories have been 
developed; it is generally well accepted that a suitable theory is the 
standard (~4 theory (or the Ising model) where a Landau-Ginzburg type of 
Hamiltonian is involved, t2-6~ It is of course understood that the ~0 4 theory 
is adapted to reproduce the critical behavior only asymptotically close to 
the critical point; the usefulness of such a model appears then to be limited, 
besides the understanding of the critical phenomena in general, to the 
determination of the critical exponents. In any case, the structure of a 
liquid cannot be investigated in such a framework since the correlations 
concern a field, ~b, the physical meaning of which is not so clear (see, for 
instance, work dealing with the so-called "revised scaling theory"tT)). It is 
then clear that all the properties of the Ising model cannot be applied at 
the critical point in liquids; as an example, one has the well-known GKS 
inequalities, c8-~~ which are inequalities between the n-body correlation 
functions satisfied by the Ising model for each thermodynamic state and for 
all interparticle distances. Clearly this cannot be true for liquids, but both 
in the very close vicinity of the critical point and for very large interparticle 
distances (comparable to the correlation length). The problem then 
remains to know whether such correlation inequalities are satisfied by the 
actual correlation functions in the vicinity of the liquid-gas critical point 
and this is the purpose of this work. 

We investigate the behavior of the usual n-body correlation functions 
of the liquid state theory in order to determine if they satisfy inequalities 
similar to the GKS inequalities. However, since we do not start from an 
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effective Hamiltonian (as in a Landau-Ginzburg type oi~ approach) we 
have to state from the beginning a phenomenological critical equation of 
state and the behavior of the two-body total correlation function, the 
integral of which is related to the isothermal compressibility/l~ which 
diverges at the critical point, t2'3'11) This amounts to assuming both the 
existence of the critical point and that the critical exponents 6 and ~/ are 
known. Then we use the integral equations first derived in ref. 24, in the 
form given by Baxtert12); these are exact relations between the n-body and 
( n +  l)-body correlation functions. In addition, we use the n-body 
Ornstein-Zernike equation, which show that the n-body total correlation 
function can be expanded in a f in i t e  number of Mayer diagrams, involving 
the h ~2~ total correlation function, and the direct correlation functions, c ~e~, 
with 3 <~ p ~ n. 

In Section 2, by using the Baxter relations, we determine the behavior, 
in terms of the density, of the integrals of the correlation functions on the 
critical isotherm. Moreover we show that the leading contribution to the 
integrals of the total correlation functions h ~n~ is due to the region of space 
where all the interparticle distances are of the order of the correlation 
length, generalizing the behavior of the two-body total correlation func- 
tion, the weak decrease of which is responsible for the divergence of its 
integral at the critical point (C.P.). In Section 3 we analyze the form taken 
by the correlation functions in the algebraic regime. In Section 4 we obtain 
an upper bound for the total correlation function, when all the interparticle 
distances are large, but where two length scales are involved. We analyze 
a diagrammatic expansion of h c'~ in terms of a finite number of Mayer 
diagrams, built up from h (2) bonds and some c ~p~ functions with 3 ~< p ~< n. 
Notice that we could have used the formalism of the generating func- 
tional~24~; this would lead to a simpler derivation of the n-body Ornstein- 
Zernike equation of Section 4.1. However, an important cancellation of the 
sum of a set of graphs is obtained; this cancellation is necessary to recover 
the correct "dimension" of the integrals of the functions h I'). This property 
justifies a posteriori  our choice for the h ~'~ and the c ~'~ functions, instead of 
using the alternative generating functional formalism, since overall it would 
not simplify or clarify the presentation of our work. 

In Section 5 we discuss our results, and finally we conclude briefly in 
Section 6. 

2. I N T E G R A L S  OF T H E  C O R R E L A T I O N  F U N C T I O N S  

In  this section we focus on the Baxter relations, <~-~ which are exact 
and satisfied in the whole thermodynamic space. We study their consequen- 
ces, in the vicinity of the critical point (C.P.), for the integrals of the 
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correlation functions. This is done in two steps. In Section 2.1 we start from 
the Baxter relations and we perform the integrations over the space 
variables, which leads to a hierarchy between the integrals of the n-body 
correlation functions; then in Section 2.2. we introduce the critical equation 
of state on the critical isotherm and we get the desired relations. 

2.1. Exact Relations Between the Integrals of the 
Correlation Functions 

Starting from the canonical ensemble, Baxter "2) established that the 
n- and (n + 1)-body total correlation functions h ~') and h ~'+~ are related 
according to 

f h~"+]~ dEn+ l]=(Oh("/Op)T{l +p f h(1,2)d[2]) 

+ nh I'') f h( 1, 2) d[2]  (1) 

where h(1, 2) is the two-body total correlation function and p is the num- 
ber density. To each of these functions, depending on the space coordinates 
of the molecules, we associate the integrals 

H ('')= fh(1, 2 ..... n) d[1]  . . . d [ n -  1] (2) 

performed over the coordinates of ( n -  I ) molecules; due to the transla- 
tional invariance, H ~") depends only on the thermodynamic state, which 
can be characterized, for instance, by p and T. From Eqs. (I) and (2), we 
get 

H(~+))(p, T ) =  [1 + pH(2)(p, T) ][ aH(")(p, T)/Op ] T 

+nH(2)(p, T) H(")(p, T) (3) 

Since H(2)(I 9, T) is related to the isothermal compressibility ;(r  bY ~)~ 

p2Xr/fl=(p/fl)(Op/OP)r=(Op/Ofl/2)r=p[1 +pH('-)(p, T)] (4) 

where P is the pressure, /z the chemical potential, and fl-~ =kT, the 
knowledge of the behavior of xr(P, T) allows one to get some information 
on the whole set of integrals H(")(p, T). 
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The distribution functions g(") = p(")( l, 2 ..... n)/p" can be expanded in 
terms of products of correlation functions h ('), with m ~< n, according to 

g(1,2 ..... n ) = l + ~  {I-I[h(i~,i2 ..... i,,)] } (5) 
Q 

where the sum runs over all the partitions Q of the set ( 1, 2 ..... n) in distinct 
and nonoverlapping subsets (i,, i2 ..... i,,) with 1 ~<m ~<n, ip e(1,  2 ..... n), 
and the product runs over all the subsets of the partition under considera- 
tion; when the subset includes only one point, the corresponding h function 
is set equal to 1. From Eqs. (1) and (5) we obtain, after some tedious 
manipulations,(13) 

[ 1 +pH(Z)(p, T)](Og(")/Op)r+nH(Z)(p, T) g(") 

= f [ g ( . + l ) _ g ( . ) ]  d[n  + 1] (6) 

or equivalently the well-known relation (14) 

= ~ [ p("+ ') - pp(")] d[n + I ] (7) [ (ap,,,)/o,8/,O T -  np (n) ] 

Between the direct correlation functions c (') we have the relation 

c(.+ t) d[n + 1 ] (8) (Oc(")/Op)v= 

which leads for the integrals 

= f c ('') d[ 1 ] . . .  d i n -  1 ] (9) C(,,) 
J 

to 

= C (" [OC(")(p, T)/Op]T +~)(p, T) (lo) 

2.2. Properties of the Integrals of the Correlation Functions 
near the Critical Point 

We consider the vicinity of the critical point, along the critical 
isotherm, and we examine the form then taken by Eqs. (3) and (10); 
however, we emphasize that we focus only on the leading terms of each 
quantity considered. In the following, A c will denote the value taken by the 
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quantity A at the critical point. We state a critical equation of state in the 
f o r l I l ( 2 ,  3, I t )  

( P - P ~ ) = ( p - p ~ ) a +  . . .  (11) 

where the dots represent the correction to the dominant contribution to 
( P - P ~ ) .  The exponent fi is greater than or equal to 3 because the ther- 
modynamic stability imposes that the compressibility takes only positive 
values and as a result (3zP/OpZ)r vanishes, while (O3P/ap3)r takes a finite 
value at the critical point, where ;(-] and thus (aP/Op)r  vanish, c~) From 
Eqs. (4) and (11) we get, by neglecting 1 compared with H ~2), 

pcHCE)(p, T) = Ac(ZIp) (I -~) (12) 

Here Ac is a dimensionless amplitude, positive because ;(r  is positive, and 
dp  is the reduced deviation in density ( P - P c ) / P c ;  Ap is positive 
throughout this work, without any loss of generality. Indeed, because we 
deal with the critical isotherm, we only consider here the fluid region where 
the exponents are continuously defined and therefore no difference between 
the case Ap >10 and dp <~ 0 is to be expected. At this point we assume also 
that the two-body total correlation function h (2) takes its standard form, c~5) 
namely 

h~2)(rl2) = B exp( --rla/~)(r12 ) -ca-2 +,l) (13) 

where B is a constant and ~ is the correlation length. Then, from Eq. (12) 
we get the behavior of the correlation length in terms of Ap, namely 

~ = zipil -al/t2-q) (14) 

Moreover, from the arguments given in ref. 2, the deviation of the total free 
energy from its value at the critical point is localized in a volume C a and 
therefore the deviation of the free energy per unit volume is f v = f c ~  -d. 
Then, from (OP/3p)r=p(O2fv/Op2) r and from E q . ( l l )  we obtain 

= Ap - ca + t)/d. From these two expressions of ( we deduce the well-known 
relation f i = ( d + 2 - r l ) / ( d - 2 + q )  and an alternative relation between 
and Ap, 

= Z i p  --2/(d--  2 + q) = Z i p  --I/d# (15) 

where we have introduced d~= ( d - 2 + r / ) / 2 .  We note that d~ coincides 
with the so-called anomalous dimension of the field used in the field- 
theoretic approach to critical phenomena. ~ 

Now we examine the hierarchy of integrals H~ we start from Eq. (3), 
and since H ca) diverges when we approach the critical point, we can drop 
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1 compared to p H  (2) in the first factor of the r.h.s. Moreover, for the same 
reason, the whole set of H ~ is expected to present a singular behavior in 
terms of Ap and accordingly the second term of the r.h.s, of Eq. (3) can be 
neglected when ,one focuses on the leading term of H ~'). Therefore we get 
He,+ 1) from H (") by using 

and from Eq. (12) we get 

He,  + 1) = pH(2)(OH(,)/Op ) 

with 

(16) 

x , =  1 - - ( n -  1)6 (17b) 

A ( 2 ) = A c > 0  (17c) 

A ( n ) = ( - 1 ) "  [A~ "-n) Ix2x3...x._~l] (17d) 

Hence, only from thermodynamics, we can conclude the following: (i) All 
the integrals H c") diverge at the C.P. We can associate this divergence with 
the weak decrease of the functions h (") with respect to the distances r~. (ii) 
The behavior of H ~") is only determined by the specific (Ac, Pc) and univer- 
sal (6) parameters which characterize H ~2). (iii) The sign of the H (") is 
alternating. Notice that the last point, in contrast to the first two, is not 
a priori expected. It is interesting to relate the integral H ~") to H (z). We find 

HI")=(-1)"(B/Ac) Ix2x3...Xn_ll (H(2))tn-1)(z~p) (z-n) (18) 

where B is a constant. Thus, we see that H c") cannot be reduced to a 
product of H(2); in particular, we can deduce from (18) that the popular 
superposition approximation tL 16) for h t") does not work. According to this 
approximation g(") is simply a product o fg  c2), hence h ("~ is a product of h c2) 
bonds connecting the different root points, with neither field points nor 
convolutions. In the case of h t') the minimum number of bonds required to 
connect the n root points is ( n -  1 ). Accordingly, if we calculate H c") in the 
superposition approximation, we get a first contribution (H(2)) c"-I), and 
the other contributions are negligible compared to this first one. Further- 
more, the factor (zip) ~2-") in (18) shows that h ") is a longer range function 
than the corresponding result in the superposition approximation. 

Concerning the direct correlation functions, the integrals C ~') have 
already been obtained in ref. 17; with the result 

p"-nC~") = ( - -  l )" ( n - - 2 ) ! -  C ~  -r l)/(a-l) 

= ( - 1 )" (n - 2)! - Cc~ c ' -  i )a- ,% (19) 

H (") = A(n)  Ap x" (17a) 



1248 Di Caprio e t  ai.  

where the magni tude of the volume integration is explicit, i.e., ~t . -1)a,  and 
d~ = d - d , .  In contrast  to H ~ which diverges at the C.P. whatever  the 
value of n, C c") is finite if n ~< 8 + 1. For  these values of  n, C I"), which is a 
pure number ,  ( - ) "  ( n - 2 ) ! ,  at the C.P., results from both the long-range 
and the short-range contributions of  c c'). The relative importance  of these 
two terms may  depend on the specificity of  the system under consideration. 
For  these values of  n the deviation relative to the critical value of C ~ 
given by C,( ~- t~ d-nd'#, is small and positive. This singular par t  of C c'~ can 
result f rom the algebraic behavior  of  c ('~. Indeed, from the two-body 
Ornste in-Zernike  equation, cL ~s) which reads, in Fourier  space, 

c~2)(k) = h~2)(k)/[ 1 + hl2)(k) ] (20) 

and from the long-range contr ibution to h r given by (13), we can deduce 
the long-range par t  of  c t2~, and this allows one to explain the dependence 
of C c2) with respect to ~. However ,  since the correction to the critical value 
is small, we cannot  deduce that  the singular par t  results only from the 
long-range behavior  of  c ~2~. For  instance, we cannot  rule out the presence 
in c ~2) of  a short-range contr ibution presenting a nonanalyt ic  amplitude,  in 
the form f ( r~2)~pt~-~) ,  leading for the integral C t2) to the same behavior  
with respect to ~. If  this occurs for c c2), which means simply that  the long- 
range behavior  is coupled to the short-range one, this is necessarily also the 
case for the other c t') because of the Baxter relations, Eq. (8). Notice that  
h c2~ can also exhibit a similar small nonanalyt ic  amplitude,  but since H t2~ 
diverges at the C.P., this effect can only be a correction to the leading 
behavior  of  H t2~. 

When n/> 8 + 1, C t''~ diverges at the C.P. and its sign is alternating. In 
this case, the singular par t  of  C t'') can be related to the weak decrease of  
the function c ~" as is the case for h ~"~. 

Now we examine the case of  the integral of  ht")(1, 2 ..... n) when the dis- 
tance between two particles, say 1 and 2, of  the set (1, 2 ..... n) cannot  
exceed 2, with ~r < 2 ~ ~ (tr is a molecular  length scale). This will give us 
some information concerning the part  of h c~) which is responsible for 
the leading contribution to the integral H ~ We start  from the Baxter 
equation, Eq. ( 1 ), 

f h~"~ d[n]=H~2~[(pOh'-u~/Op)r+(n-1)h~ (21a) 

= [ H(2)c3 + (n -- 1) H (2)] h ( ' -  1) (21b) 

where ~ f i s  a shortened notat ion for p(af/ap)r. Then we integrate over  the 



Correlation Functions near Liquid-Gas Critical Point 1249 

coordinates of particle ( n - 1 )  and we use once again Eq. (21b) at order 
( n - 2 ) :  

~ h ~") din] d i n -  1] 

={[H~Z)O+(n-1)H(2)][H(2)O+(n-2)H(2)]} h ('-2) (22) 

and we follow this procedure until the r.h.s, includes only the two-body 
total correlation function h(2)(1, 2). We thus obtain 

I h(")(1, 2, 3 ..... n) d[n] d i n -  l ] . . . d [ 3 ]  

= {  I-I [H(Z)O+iH(2)j}hr 2) 
i = 2 , ( n - -  1) 

(23) 

Finally, we get 

H(~") = I~ all'2] I h(')( 1, 2, 3 ..... n) dFn] d[n - 1] . - .  d[3] 

= (  1--I [Ht2)O+iH(2)]t(fd[2]ht2)(1,2) ) 
2 ( n  1) 

(24) 

where J ;d [2 ]  =~ (r12<)~) dry2. The order of magnitude of the leading 
term (i.e., its dependence with respect to zip) in Eq. (24) is determined as 
follows. First, each multiplication by H (2) brings a factor ~d-Zd,. Second, 
(H(2)O)fleads to ~ H(2)fif the function f i s  regular and nonzero at the C.P. 
and to ,~ (1/zip) H(2)f if the function f is singular, where a function is called 
"singular" if it presents a nonanalytic power-law dependence with respect 
to zip. In any case the first term of [H(2)O+iH ~2)] is greater than or 
comparable to the second one and therefore the leading term of H(~ ") is 
determined from 

H,,,,_ H, 2, 2 - -  (25) 

From Eq. (13), we have 

OH(~2)= (1/~)(0~) J" h(2)(,')(r/~) dr + (1/B)(OB) H(~ ~, (26a) 

laH(~2) I ~< (1/Ap)(~/~) IH~2q + I(1/B)(OB) H~2)I (26b) 

822/80/5-6-21 
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and we expect (1/B)(OB) ~ 1. The inequality (26b) is obtained by consider- 
ing that for small values of 2, for instance, 2 ~ a, the first term on the r.h.s. 
of (26a) is negligible as a consequence of (15), the second term, which is 
the regular contribution to 3H(~ 2) being the dominant one. In contrast, the 
first term is dominant for large values of 2, where the monotonous 
behavior of k (25 for large r is sufficient to yield an upper bound for the 
integral by simply replacing (r/C) by its largest value (2/~). Equation (26b) 
tells us that (OH(~2))/H(~ 25 is smaller than or equal (when 2 = ~ )  to 
(OH~-))/H (25 and we deduce from Eq. (25) 

Hi,,,= { [ H,25a ]("- 35} ( H,2)a( H(a25) ) 

(H(2)) ( ' -  3) (O("-35H(2))(OH~2)) 

(H(25)(.- 25 ( 1/Ap)~.- 3)(8H~2)) (27a) 

The third line in Eq.(27a) is obtained by using (3("-35H~2))= 
HI2)(I/ZJp) ~n-35. Equation (27a) is transformed according to 

H(.5 ~ (H(2))(. --15 ( 1/Ap)(,,--25 [ H~25 /H(..)] [ dp(OH(25)/H(a25 ] 

= Hc,,5[H(a25/H~25][(OH(25)/H(25]-I[ (OHa(2))/H~.(2) ] (27b) 

where we have replaced (alp) by [(OH('-5)/H~25] -~. We then use the fact 
that the divergence of H (:5 is due to the weak decrease of k (25 when 
r~2~ oo; this together with Eq. (26) leads us to introduce an exponent 
x(2), according to 

OH(~'-51H(~'-5 .~ (lldp)(21r + 1 ~ An - ' [  (,Vr + ,an] 

= [ (OH(:))IH(2)] [ dp x(~5] 

with 

x(2) = inf{ 1, [ 1 -- Ln(2/a)/Ln(~/a)]/dr (28) 

where Eq. (15) has been used. Obviously, x(2)/> 0 and x (~)=  0. Moreover, 
when 2 is comparable to the molecular length a, the regular contribution 

r ~(2)/ir to Lv..a ~..~. j warrants that x ( a ) =  1. From Eqs. (27), (28) we get 

H(a,,) ~, H(n)[H(2)/H(2) ] ~-x(.~)ar = H(,)[H(2)/H(2) ] ApX(.~) (29) 

When 2 ~ a, the integral of k ('-) is a constant with respect to ~ and we get 
the result 

H(~,) ~ H~.)[ l /H(:)]  ~-x(a)a§ ~ H(,,)~-a+ [2-x(~)] a, (30) 
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Since ( - d +  2d~) < 0 and x(2 < ~) > 0, in any case we have H~ ") <~ H c') and 
this result may be generalized to the case where more than one distance is 
kept of the order of a in the integral. The important point is that we 
demonstrate the intuitive result that first the leading contribution to the 
integral H c'~ comes from the part of the space where all the distances are 
of order ~, which is a generalization of the explanation for the divergence 
of H ~2) at the critical point, and second that H~ ' )~  H u'-  ~), since x(cr)= 1. 

Notice that the preceding result cannot be generalized to the C c"), 
because Eq. (28) cannot be stated for c (z) and the second equality of (30) 
has no equivalent for the direct correlation function, since its integral C cz) 
is finite at the critical point. 

3. F O R M  OF THE C O R R E L A T I O N  F U N C T I O N S  
NEAR THE CRIT ICAL  P O I N T  

In this section, we consider the form of h (') and c c") in the vicinity of 
the C.P., by using the results of the preceding section. The expressions of 
h c") and c (') depend on 3 n -  6 independent distances among the n(n-  1)/2 
distinct ones. We consider a partition of the configuration space V" into 
V'~', V'~r and V~ defined as follows: in V'~' all the distances between the par- 
ticles are bounded by the molecular length a; in V'~'r at least one distance 
is of order a and at least one distance is of order ~; while in V~r all the dis- 
tances are of order ~. To this partition we associate a splitting of the 
correlation functions into f~"), f~'r and f~"), where f =  c or h. This splitting 
is defined in such a way that f ' " ) = f ~ " ) + f ~ ) + f ~ " ) a n d  f~"~({ru})= 0 if 
{ru} r V'o'. Obviously, one can imagine a simple form for f ( , I  only in the 
region where the universal behavior may hold, namely in 1:~. Thus, we 
investigate the form of c~ '') and h~ "), on the basis of what is done for the 
long-range part of h(2), (15) and by using the arguments developed by 
Cardy. "9) However, in order to do that, we have to be sure that the effect 
of f~  ") is actually dominant in the critical behavior. Given the results of the 
preceding section [see, for instance, Eq. (30)], we can conclude that this is 
indeed the case for h ('), and therefore we can analyze separately h~ "). 

3.1. Tota l  Cor re la t ion  Funct ion h (") 

We separate.h~ ") into three different factors, playing different roles: 

h~")({ro.})=~[l--[(r~)-'c";i'-i)]-lqb(")({riJ~})F({ro./rlk}) (31a) 

The first factor is the inverse of a product of a set of distances; different sets 
are involved and we consider a sum of such products symmetric with 
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respect to the permutations of particles; the second factor is a cutoff func- 
tion, playing the role of the factor exp(-r~2/~) in h(2); the third factor, 
according to ref. 19, is a dimensionless function F depending on products 
of the ratio of distances {ro./r~k }. Furthermore, by definition, h(r ") vanishes 
when at least one distance becomes comparable to a, which means that it 
includes a product It[(~o(ro/a)], not made explicit in (31), where 
~bo(X < 1 ) = 0. Since we deal here with the actual correlation functions, and 
not with a perturbation scheme including at a given stage the so-called 
ultraviolet divergences/2-6) the short-distance cutoff function ~b o does not 
need to be treated explicitly and can be dropped in our analysis. The 
unknown function F describes the "angular" structure of ht"): it is likely to 
play a crucial role in situations where two length scales, say 2~ and 22, 
must occur in the set {ro. }, with a<~2~,~22~<~. Its properties can be 
obtained in some cases under the hypothesis of conformal invariance; <.9" sot 
for instance, F =  1 for the three-body correlation function and for the four- 
body case the argument of F is a cross ratio of the distances. 

The important point at this stage is that the product [I--[ (rij) z('':i'j)] - I  
and the function F do not play the same role: [1--[ (ro)-'("~J)] - '  has a 
dimension, while F is dimensionless. Therefore, in a dilation of all the dis- 
tances which leaves the angles unchanged, the function F is invariant and 
the behavior of h~ "~ is determined by [ I t  (ru) ~':~J~] -~. Now, from the dis- 
cussion of Section 2.2 we know that the leading part of the integral H ~'') is 
due to h~ ") and we thus have 

= ~. h tn ) (  Hi,,) _r ,{ru})d[1 ] . . d [ n - 1 ]  J 

E 1 =~(,,-,)a-r~o,;,.j~f~ ]-I (r,)~,,,;;.j) d [ l * ] . . . d [ ( n - 1 ) * ]  (32) 

where r* = r / (  and d [ i* ]  =d[ r /~ ] .  From Eqs. (17) we get the sum of the 
exponents involved in [ 1--I (r0-)~("i'J~] - l, or the "dimension" of h ~"7: 

[z(n; i, j ) ]  = ndr (33) 

3.2. D i rect  Corre la t ion  Funct ion  c (") 

It is tempting to treat the direct correlation functions c (''~ in the same 
way. Writing 

c~"'({ro.})= ~, []-I (ro.)~""z"J)] - '  7t(")({ru/~})K({ro./r,k}) (31b) 
L _l 
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one can see that instead of  (33) we obtain 

[z ' (n;  i, j ) ]  = nd'~ (34) 

As mentioned in Section 2.2, we have two contributions to Ct"): 

C r176 = ( - 1 )(n - 2)! + ( C d p " -  1) ~ , , -  1) a-,,d'~ 

The first term is dimensionless and represents the leading contribution to 
C ~ when n > 6 + 1. It is a priori not possible to state whether the short- 
or long-range part  of c t') contributes most  and to which of  these terms. 
However, in the case of  c t2~ (or even c t3) if one adds the hypothesis of 
conformal invariance; see Appendix B), we know the behavior for large 
distances r ~> a: 

c(2)(r) ~ (1/r) 2a'~ 

When integrated over a volume where this expression holds, for instance, 
outside a sphere of  several molecular diameters a, such as R >1 N a  with 
N>> 1, we see that this long-range part cannot  give the leading 
( - 1 ) " ( n - 2 ) !  ( n = 2 )  contribution, which then can only come from the 
short-range part. We extend this analysis to all c ~'~, arguing that all c r are 
decreasing functions and that the dimensionless part  is essentially related to 
the short-range part  of  the functions. Therefore, we redefine the c ~'~ by 
separating it into a short-range, c~ '~, contribution and a long-range, c~ "), 
contribution, such that the integral of  c~ '~ yields the nondimensional con- 
stant contribution. As we are concerned with the long-range behavior, we 
write 

c~'~( 1, 2 ..... n) = [ ( - 1 )" (n - 2)! /p ~ ' -  1)] fi(rl _ r2 ) ~(rl - r3) �9 �9 �9 J(rl  - r,,) 
(35a) 

and we define the long-range contribution c~ "), which can contain both 
length scales a and ~, such that c~'~= (c I ' ~ -  c~ '~) and 

f c ~ " ) d [ 1 ] . . . d [ n - 1 ] =  -(Cdp"-')~c"-~la-"a'~ (35b) 

4. DETERMIN/~TION OF AN UPPER BOUND FOR h cn~ 

In order to find an upper bound for h "~ which is to be understood as 
h~ ''), we use the n-body version of the Ornstein-Zernike (OZ) equation 
from which h I'~ can be rigorously expressed via a finite set of  integral equa- 
tions involving h 12) and the functions c ~'), with 3 ~< m ~< n. The n-body OZ 
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equation can be represented by an expansion in Mayer  diagrams; it is then 
nothing else than the analysis of  h t'~ in terms of  nodal points. This expan- 
sion involves"only a finite number  of  diagrams, and thus avoids any 
problem of  convergence of  infinite series. In the following, we investigate 
the structure of  these graphs, in order to find the leading contribution of  
the sum when all the distances between particles are large, and then to 
deduce an upper bound for h t'~. 

4.1. Recursive Construction of the N-Body 
Ornstein-Zernike Equation 

In order to establish the n-body Ornstein-Zernike equation we 
proceed in a recursive way, showing how we can get h ~'~ from h ' - ~ .  In 
h ~ ' -  '~, we isolate three different diagrammatic structures. 

First, we consider the set of  graphs in which there is no field point and 
only n -  1 root  points, some h ~2~ bonds, and no subgraph forming a loop: 
these are tree graphs. To create a new root  point, we add an extra h ~2~ 
bond at one of  the n -  1 vertices, and we then generate a part  of  h ~n~ which 
is still a tree (see Fig. la). 

Second, we have the. part  of  h ~n- ~ which is free of  nodal points: by 
definition this coincides with c r  t l. F rom this we generate either a new 
graph without a nodal point, i.e., c ~'~ or a graph with one nodal point by 
adding to c ~n-~ a c r function (see Fig. lb). 

Finally we consider in h ~"- ~ the graphs including field points, some 
c ~'') functions, and some h ~2~ bonds. The rules from which the graphs are 
constructed are the following: the function c ~2~ is absent because h ~2~ and 
c ~'-~ cannot  be put in series, ~21~ and so m ~> 3; two h ~21 bond cannot  be con- 
nected in series, ~2~ namely just by a field point; as can be seen from pic- 
torial arguments,  we must  have m ~< n. The introduction of a new root  
point can be done in only three different ways. First, from a root  point of 
h ~ ' -  ~ we may add an h ~2~ bond terminated by the new root  point. Second, 
from a c ~''~ we have two possibilities: (i) we can generate c ~ ' '+~,  which 
contains the new root  point, or (ii) from c ~'+~1 we add an h ~2~ bond ter- 
minated by the new root  point. Third, we can split an h ~2~ bond  introduc- 
ing a new h ~2~ directly or via a three-body direct correlation function c TM 
(see Fig. lc). 

Therefore, starting from the OZ equation for h {3~, which is explicitly 
known, we can construct the equation relative to h ~n~ and the important  
point is that it can be represented by a finite number  of  graphs G(n); in the 
set of  graphs {G(n)} each element contains some h ~2~ bonds and a given 
number  of  c ~m~, with 3 ~< m ~< n. 
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Recursive construction of the n-body Ornstein-Zernike equation. 
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We first eliminate the graphs of the first two cases in the preceding 
analysis since, once integrated over the root points, they lead to a smaller 
dimension than that of H ~'). Similarly, we can eliminate the graphs where 
a point of a c ~') function is a root point; indeed let us consider such a 
graph, G(1, 2 ..... n), the root point belonging to a c t ' )  function being, say 
rl;  the expansion of h ~n) includes also the graph 

G2(I, 2 ..... n) = f  G(I ' ,  2 ..... n) h(2)(1, 1') d [ l ' ]  

whose dimension is higher than that of G because of the h (2) bond. There- 
fore, in the following the graphs that we consider include some c ~"') func- 
tions, at least two h t2) bonds, and some field points, and each root point 
ends an h t2) bond. It is convenient to define a node as follows: this will 

= ~ 4  ~ 4  ~ 4  

1~ 4) + + 

3 3 3 

+ = 

3 3 

Fig. 2. Illustration, from a particular contribution to h (4), of the definition of the nodes V ~p~. 
Here, we consider V C41. The permutations of the second and of the third graphs of the first 
line are not made explicit; they are responsible for the factors 6 and 3 in the expansion of V ~41. 
The hatched subgraphs are c ~p~ functions and the lines are h TM bonds. 
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denote the sum of the subgraphs of h ('') including only some c (") functions 
directly connected together through field points and characterized by the 
number of external h (2) bonds connecting the node to the whole graph. A 
node with p external bonds will be denoted by V (p). With this definition, 
we see that a node V (p) is built up by a set of graphs, denoted V (''p), each 
V ~'p) being characterized by a number p~ of external points, with p~<<.p. 
The simplest component of V (p) is a point at which, in the whole diagram 
of h c'~, start ph (2) bonds; this component will be denoted the "1" compo- 
nent of V ~p). We can obviously define the V (~'p) in such a way that they all 
present exactly p external points, by using appropriate 6 functions, and in 
the following we denote by W (~'p) this definition of the components V (~'1'). 
It is easy to see that the graphs we consider for h ("), are free of loops of h (2) 
bonds and nodes V fp) since such a loop is a part of a c ("') function, with 
m >p ,  as it is a graph at least doubly connected. Thus we are left with 
graphs including some field points, at least two h (2) bonds, and nodes V (:), 
with 3 ~<p ~< n. As an example, V (4) is shown in Fig. 2. 

4.2. Cancellation of Constants Related to the 
Short-Range Part of c (mi 

In this section we show that the sum of the graphs of h ('') in which 
only the component c (m) of each function c (''), involved in the nodes V (p) 
is taken into account vanishes. We denote by V~ ) the contribution to V (p) 
calculated by using only the components c(~ ") of c ( ') .  We replace all the c (") 
by their short-range part, r(")  defined in (35): the nodes V~ ) are thus also 
constants times a product of ~ functions; let { 1, 2 ..... p} be the points of the 
node v(p) we have - - a  , 

V ~  ) = b(P)f(rl  --  r2) O(r] -- r3) . . .  ~(rl -- rp) (36) 

and we just have to show that all the b (p) vanish. At first sight, we calculate 
the first three terms of the set, namely b (3), b (4), and b (5). The important 
point is that these are labeled graphs; moreover, the convolutions involved 
are easily calculated since the _(m) functions, once integrated over m 1 CO " 

coordinates, are constants C ('), leading to a very simple factorization and 
finally the field points are weighted by the density p. We get 

= 2 (3) (37a) b TM 1 + p  C~ 

_ 3 g " ( 4 )  6 p 2 C ~ ) +  4 (3) (3) b (4) 1 + ~, ,..~ + = 3p C ,  C,, (37b) 

= ^4  r-', (5) - ~  _3 : , ( 4 )  5 (4) (3) b (5) 1 q - p  t.. a -k- l o p  ~--a -I- lOp C.  C~ + 2 5 p 2 C ~  3) 

^ 4 p ,  (3) / - ,  (3) 6 (3) (3) (3) +45/,  , ~  , ~  + 15p C~ C~ C~ (37c) 
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From Eq. (19), we obtain b~3}= b {4}= b~S}= 0. We use the Baxter relations 
on the hierarchy of  the c Cp}, Eq. (8), and we define, for convenience, the 
operator 8 [ .  ] by 

of  = O( pf)/op 

By using (8) we obtain 

b {4) = O[-b r ] + 3C,,131b ~3} (38a) 

b tS} = 0 [ b  t4)] + 4p-~^*~3}~t4}u -r3b- t3)p2C~3)b(3) (38b) 

These equations suggest that there is a recurrence relation between the b ~p~. 
This is obtained by decomposing the procedure allowing us to generate 

(p- - l )  V~ p} from V~ . 
The first step is to take into account all the possibilities to add a new 

external bond  to v~p-~} without introducing a convolution. We have to 
consider two types of  transformations: the first one changes the topology 
by generating a new external point changing a c ~ ' -  ~) into a c (m) and the 
other one consists in adding the new external h 12} bond on an existing 
external point or on a nodal point between two c ~m'} functions in the graph 
V ~ - u  which is left unchanged. This first step is exactly performed by the 
action of the operator  0 [ . ]  [ the derivative with respect to p of  the 
in tegra ls  b ~p} correspond to a functional derivative with respect to p(r)  of  
the Mayer d iagrams")] .  In this first step one pattern is left out, which is 
the case where the new pth h ~2} bond is attached as a unique bond to a 
point of a c ~3} function, while if this h ~2} is not  alone, the corresponding 
graph is accounted for with the operator  8 [ .  ] acting on an external point 

(p- - l )  of an existing c ~3} function of  V~ . Now when this bond  is alone the 
peculiarity of  c 13} is that it can be generated only by the derivative of a c ~2} 
function and this one, unlike the other c c'} functions with m >~ 3, does not  
exist in the n-body OZ equation: thus the above-mentioned graphs are not 
generated by the 8[-.] operator. The second and third steps consist 
precisely in introducing the new h ~2} bond via a c TM function. 

In the second step we consider the introduction of a c ~3~ function on 
an external point of  V~ p-~}, which we refer to as a j point on which k(j)  
points are connected. The result of  this is a c~3}(j, j~, p) function, where on 
the p point we have the p th  h ~2} bond, on the point Jl we choose in this 
second step to have only one h ~-~ bond, and on the point j we have the con- 
volution with the rest of  the original diagram. This operation is done on 
each external point of  the graph and each time we select a single external 
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L 
f \ 

a b 

Fig. 3. Examples of graphs which cannot be obtained by the two first steps (made explicit 
in the text) of the procedure generating V (p~ from V tp-~. The hatched subgraphs are c tp~ 
functions and the lines are h t:~ bonds. 

bong among the k( j )  ones to be attached on j~. The number  on external 
bonds being p - 1, for each graph of  V~ p -  1~, we have in b (') a term 

(n - 1 ) p2C(3)b("- 1) (39) 

However, in the construction of  b ~p~, we have to consider more complex 
situations where more than one h (2~ bond or  even a combinat ion of h (2) 
and c ~''~ functions is attached to j l .  Examples of graphs not generated by 
steps 1 and 2 are given in Fig. 3. 

In the third step, we consider the case where the c ~3~ function is intro- 
duced on a j convolution point  of  v~p-  ]~. in this respect an external point - - a t  

with k(j)>1 2 is also a convolut ion point with the use of  adequate ~ func- 
tions. The transformation corresponding to this third step can be formally 
represented by 

A*,Ak2 ~ A~Ip2C(31*Ak2 (40) 

The Akf graphs are labeled according to the number  of  h t2~ external bonds 
attached to them: k; is the number  of  external bonds of  Ak, plus one, the 
nodal point connecting Ak, and Ak,_. We thus have the constraint k~ + k 2 = 
p - 1  and k~,k2~>2 (the case kl or k2 = 1 has been accounted for in 
step 2). Rather than discussing each diagram in V~ p -  ~ and constructing all 
possible combinations,  let us observe that for the graph Ak,, the remaining 
p2C(3)*Ak2 part  is simply a label. For  a given p2Ct3)*Ak2, the possible 
choice of  Ak, graphs is equivalent to the problem of attaching kl + 1 labels 
to a graph, which is nothing else than V~ '+~). The contribution of  
these graphs is simply b tk~+ i) and symmetrically for Ak.,; therefore (40) is 
summed up into 

b(kl + l),p2Ct3).b(k,. +l) (41) 
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Considering all sets constituted with k]h r bonds drawn from the set of 
p - 1  external bonds, we have the permutation factor 

Cp, - '  = [ ( p -  1 ) ( p - 2 ) . . . ( p - k ] ) ] / [ k , ! ( p -  1)!] 

and an overall 1/2 factor to account for the symmetry between Akl and 
Ak2. We thus have in b ~p) the term 

( I / 2 )  E CP, -! [b~k'+l)P 2C~31b~p-k'-2)] 
{kl =2, p--3} 

(42) 

We can finally check, first, that all graphs of b cp~ for all possible ways 
of introducing a new pth bond are accounted for via the a [ .  ] operator or 
via the introduction of a c t3) function; second, that no graph is counted 
twice, because the three steps above define different graph specifications. 
We can therefore write 

b ~  - l')pt.r I_(p-- 1) 

+(1/2)  y" CP~ -l [blk'+ll p2CI3)b r 
{kl~2, p--3} 

(43) 

which is the desired result. Indeed, starting from the recurrence hypothesis 
according to which b Ip)= 0 i fp  ~<Po, we get b tp)= 0 whatever the value of 
p; since the recurrence hypothesis is indeed satisfied for p ~< 5, we get the 
announced result, namely 

b Ipl = 0, Vp (44) 

Thus, the fully localized part of the nodes V ~p) does not contribute to the 
expansion of h 0') and we have to deal with "dimensioned" nodes. Now, we 
shall take into account only the leading part of these nodes, which we 
christen V] p), and this is obtained as the contribution to V ~p~ leading to the 
greater dimension for the corresponding diagram of h ~ According to this 
scheme, one finds 

V~l p~ = c~r + . . .  (45) 

where the dots denote the nonleading terms, which can be disregarded in 
the present analysis, and e~Y ) -  (c ~p) tP) _~ - --c~ ) is "dimensioned" part of c ~p), 
defined by Eq. (35b). At this stage, the leading contribution of the long- 
range part of h ~176 is obtained from the sum of graphs including some field 
points, some h c2~ bonds, and some cCr p~ functions, playing the role of p-point 
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nodes. We emphasize that this cancellation is of crucial importance, 
since without this cancellation some graphs of h ~') would have a higher 
dimension than h ~'). 

4.3. Reduced D i a g r a m m a t i c  Expansion for  h~ ") 

In order to find an upper bond for h ('), we have to classify the graphs 
involved in the expansion we have obtained for the leading contribution 
h~/'~ of the long-range part h~ "~ of h (') (h~r "~ = h~ "~ + . . .  ). The diagrammatic 
expansion obtained in Section 4.2. is a sum, say S], of a finite number of 
graphs; each of these graphs is characterized by the number of h (2) bonds, 
the number of nodes of each type V~ p), and the topology of the graph, i.e., 
the location of the nodes with respect to the root points (1, 2 ..... n). 
Now, for a given combination of the orders p of the nodes, say 
{ P} = (P~, P2 ..... P N) for a graph including N nodes, we consider the sum of 
all the corresponding graphs, which we christen Sip } . In Fig. 4 we display 
an example of the representation of a contribution to h 15) in terms of Sop I. 
We focus on the graphs presenting the largest range. Our criterion to deter- 
mine the dominating graph is based on the fact that h t2) is the most delo- 
calized bond. As a result the number of h (2) bonds is fixed once the com- 
bination {p} is given and the dependence with respect to ~ of the integral 
over the n - 1  coordinates of the S{p} is independent of the combination 
{p} and coincides with that of the integral of S1. In other words, all the 
graphs Sip ~ when integrated over the n - 1  coordinates have the same 
dimension. In the following, for the sake of simplicity, the dimension of a 
graph having n root points will denote the dimension of its integral over 
n -  1 coordinates. 

We now have to find a criterion allowing us to classify different 
graphs. This is not a simple task in general since the result of a graph G~(n) 
and the comparison between two graphs G](n) and G2(n) depends on the 
configuration of the n root points; for htr '') this is a consequence of the func- 
tion F of Eq. (31). Nevertheless we can avoid this problem in the case 
where all the distances r U are of the same order: then the dimension of the 
graph is indicative of its value in terms of ~ or in other words we can relate 
directly the range of the graph and its dimension [the function F of 
Eq. (31) does not play any role in this case since all its arguments are of 
order 1 ]. Thus, for a configuration of the n points where only one length 
scale is involved, i.e., when all the distances are of the same order, we can 
already estimate h~ ") as one of the sums S{p} entering in S~. Then we can 
take the simplest one, namely $3, where the only node involved is 
V] 3) -- c] 3). This is illustrated in Fig. 4. The graphs of $3 are very simple to 
analyze and this is done in Appendix A. 
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S [5] S [4, 3l 

+ 

S [a. a. a] 

LLL 
s .  = o . . . . . .  o 

Fig. 4. Decomposition of a contribution to h 15~ (as an example) in terms of the functions 
Sip ~ defined in the text. Each graph must be understood as a sum which makes the result 
symmetrical with respect to permutations of the particles (1, 2,..., n). The corresponding $3 
representation referred to in the text is also shown. The hatched subgraphs are nodes V ~p). 

We consider  the case where two length scales are involved in the con- 
figuration of the n points  ( 1, 2 ..... n). These are denoted  by ~ and 2, and  we 
shall consider  only the case where we have a ~ ~ ~ 2 ~< ~, which means that  
both  0c and 2 can be compared  to ~, 0c/~ takes a very small  value, while 2/~ 
may be of  order  1 and in any case tT/~ ~ 0. We separate  the n points  into 
m groups i of  m(i)  points  located in a volume ct d, centered at  R;; the coor-  
dinates of  the points  in the group i are rk = R ; +  rik, with ]rik[ ~<0q and the 
distance between different groups  is R,~ ~ 2. Here, Ra is not  one of the root  
points  of  the graph,  and  it serves only to locate the group. 

Then our  task consists in determining the graphs where the nodes con- 
nect as less as possible the roo t  points  separa ted  by the large length 2. 
Moreover ,  as we have a l ready ment ioned,  we take into account  only the 
graphs where the root  points  are connected to the graph  through  an h t2) 
bond  and not  directly on a node. Two rules will be impor tan t  in the follow- 
ing for the est imations of  graphs  and these are deduced bellow. 
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First let us consider a node V] pl to which p - 1 root points located in 
the same volume ed centered on R1 are connected through h <2) bonds; this 
node is connected to the rest of the graph by an h c2) bond via its pth exter- 
nal point (which is a field point). We claim that the main contribution to 
the integral corresponding to this field point is obtained when the integral 
is performed in the volume 0~ d centered on R I. In other words, we consider 
that the field point, say p, is located in the vicinity of the p - 1 fixed root 
points. In the same way, we consider that this holds also when the node 
under consideration is connected to one (or more) root point of the group 
i and to another node V]/) connected to at least p -  2 root points of the 
same group i (see Fig. 5). This claim is justified by the fact that the nodes 
V] p) are c] p) functions which are at least doubly connected. We focus on 
the graph illustrated in Fig. 5a and we examine its dependence with respect 
to the large length scale 2. Because of the h <2) bonds connecting the root 
points labeled 1, 2 ..... which are separated by the small length e, to the Jl 
field points of the node, we can assume that the node is localized in the 
sense that the integral over the Ji points can be performed only in the 
volume ct d centered on R 1. The integral corresponding to p localized in the 
vicinity of R~ is I1 ~h<2)(2)f(e),  where f(00 is a function depending only 
on the length 0~. To estimate the integral corresponding to the point p out- 
side the volume ~d centered on R1 we take advantage of the fact that the 
function c] p) is at least doubly connected. If the integral is performed for p 
in the vicinity of R 2 we obtain f2(0Q h(2)(ot),~-2z, where the exponent 2z 
describes the double bond. A simple dimensional analysis leads to z = d~, 
while in any case z>~d+, and this gives us ~f2(~)h(2)(~)2-4d+~. 
f2(ct) ht2)(oQ htE)(J.). When the integral is performed in the whole space, 
excepted the vicinity of both R 1 and RE, we describe the double bond of 
the function c] p) by replacing c] p) by 

G=;~ d[j,] d[j2]  ~ d[k,] d[k2] c]P+"(1 ..... p-l , j , , j2)  

• ht2)(jl, kl)  h(2)(j 2, k2) c]3)(kl, k2,p) 

The reason for this is that if we consider the graph Go 

(46a) 

Go = f= d[j,] d[j2]  ;r d[k,] d[k2] c{~'+"(1 ..... p -  1,j,,j2) 

X ht2)(jl, kl)  h(2)(j2, k2) c(3)(kl, kz,p) (46b) 
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Fig. 5. Examples of configurations for the connection of a group i, including the points 
labeled (1,2,3), located at RI to a point R2; RI2~2 and ru~oc for (i,j)~(1,2,3), with 
cr ~ 1. The hatched subgraphs are nodes V~PL 

where the double bond is represented by the two h (z) functions, then the 
graph G1 obtained from Go by taking the function 6(kl, k2,p)  instead of 
the function c (3~ is also to be taken into account. Adding Go to G1, the 
short range cancellation 1 + p2C(3) -- p2C(13) justifies the use of c~ 3) in G, in 
cases where this estimation of c~ p) is used in a graph where a long-range 
function is connected to the point p. The Graph we focus on is then 
estimated from its dimension: we determine the integral over R2 and we get 
f3(a)(~ -a*) H (2). This dimensional estimation is an upper bound, as it does 
not take into account the constraint due to j l  and J2 close to one another. 
This is illustrated in the framework of the conformal invariance hypothesis 
presented in Appendix B: in this case the estimation gives a term 
(OL/~)d--3d~ ~--d§ (Appendix B.3), which is indeed smaller than the previous 
estimation ~_-d,. Therefore the contribution related to G is equal to or 
smaller than the dimensional estimation which satisfies f3(ot)(~ -d§ H(2).~ 
f(cr H(2)= ~ 11 dR2. Now, the fact that Jl and J2 are integrated in a volume 
cd is not a restriction. If these points are far from R~ and R2, the argument 
used with the point p can also be applied to the points j~ and J2. We can 
conclude then that 11, which is related to the field points of a node 
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Fig. 6. Two different configurations to connect two groups located respectively at R, and R 2 

with R12~3. and ru~ct for either (ij)a(l.  2, 3) or (ij)~(4, 5, 6), with ct/2,~ 1. The hatched 
subgraphs are nodes V ~p~. (a) The node V ~6~ is shared between the two groups; (b) the h ~-'~ 
bond only is concerned with the long distance :. when the integrals corresponding to the field 
points are performed in localized volumes centered on the corresponding groups. 

integrated over the volume ct d centered on each group,  is indeed the leading 
contr ibut ion  to the graph.  

The second rule is that  a node is not  shared by two different groups,  
located say at R,  and R2. We consider  the graph of  Fig. 6a. We have 

= f h(2)(i,, i'l )"" h<~-~(ik,, i'k,) C~(i'l ..... j'k,.) h(2)(j'l, Jl) "'" h<Z~(J~-2, Jk,.) G 
(47a) 

where p = k,  + k 2. Because of  the k,  h (2) bonds  in the first group and of  the 
k2 h ~2) bonds  in the second group,  the integrals over the field { i ' }  are per- 
formed in the vicinity of  R,  and those over the field points  { j~.} are perfor- 
med in the viciniiy of  R2. Since e] r) is at least doubly  connected,  the graph 
G is majored  by fl(0c)(h(2)(2)) 2 fz(0t). Then G is negligible compared  to the 
graph G, ,  shown in Fig. 6b, 

G ,  = f h(2)(  i ,  , i'l ) . . . h (2~( ik, , i'k, ) C] k' + t l(i'l ..... t , ) 

xh t2 ) ( t , , / 2 )  c ] k " + ' ) ( i ' l ,  ..., 1 2 ) . ,  �9 t2)  h ( J , , . h ) . . . h t 2 ) ( j ' k 2 , J k , )  (47b) 

822/80/5-6-22 
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including one node in each group, and which is estimated as G~ 
fl(ot) ht2)(2)f2(oc). Let us.point out that the previous rules are illustrated in 
Appendix A, under the conformal invariance assumption and for the $3 
representation. 

In the following we define for convenience a t-point (trailer point) as 
follows: (i) An external point of a node connected to at least two root 
points separated by ~; or an external point of a node connected to one (or 
more) root point of a group and to another node which is also connected 
to a root point of the same group through an h (2) bond; (ii) not directly 
connected through an h t2~ bond to a root point, or to a node connected to 
a root point of the preceding group. It is in fact a nodal point separating 
a group of points from the rest of the graph (see p point in Fig. 5). 

We first examine the case of a configuration including only two 
groups, of re(l) and m(2); points respectively. Following our criterion, we 
consider the graph where one t-point of one group is connected to one 
t-point of the other group by an h t2~ bond. We have two subgraphs, say Gt 
and G2, connected together by an h t2) bond via the t-points (see Fig. 6b). 
Given the preceding arguments, one can convince oneself that the main 
contribution to the graph is obtained when the integral over the field 
points of G~ (respectively G2) are performed in the volume a d centered on 
R~ (respectively R2). Therefore we estimate the whole graph by replacing 
the h 12) bond by a constant equal to h(2)(Rl2 = 2); the subgraphs Gi and G 2 

are functions where only the scale ~ is involved and they can be estimated 
according to their dimension (we recall that it is the dimension of the 
integral). This is easily obtained since Gt (and G2) can  be decomposed in 
a combination of sums S I :  I simply amputated of one h ~2~ bond; since the 
dimension of Sir  I does not depend on the combination {p}, we can use 
the estimation of G~ (and G2) obtained from $3, which we denote by 
S3[Gt].  In other words, when we deal with a configuration characterized 
by two groups, we can estimate ht:  '1 by 

h~") ~ S3FG2(o0]* he')(2) * S3[G,(~x)] 
~ h~2~(2) K(~) (48) 

where K(ot) is a finite function depending only on the length scale cc 
We now consider the general case of a configuration including any 

number of groups of localized points. As we have seen, we consider only 
the graphs where no node connected to root points via h t-'l bonds is shared 
between different groups. We can then consider different possibilities. First 
we have the case of graphs, which we refer to as Go, in which a root point 
belonging to group i is connected only to a node located in the vicinity of 
group j ( i ~ j ) :  such a graph can be disregarded since we can consider a 
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similar graph from the point of view of the topology where the root point 
under consideration is connected to a node belonging to its own group; the 
value of this second graph is that of the first one times [h(2)(oO/h(2)(2)] ~> 1. 
Then we have to consider the graphs which can be written as a convolution 
of subgraph G~, describing the groups i, with some h 121 bonds. Indeed, each 
root point of a group i is connected to a node VIP); given the graph Go has 
been eliminated, each path relating two root points of i goes through a 
node which appears then to be connected to at least two root points which 
are close to each other: the node under consideration is then "localized" in 
the vicinity of group i. We recall that the node is localized in the sense that 
the main contribution to the integrals over the corresponding field points 
is obtained when the integrals are performed in the volume aa centered on 
R;. Now, it is easy to convince oneself that the subgraph we thus define, 
Gi, presents the structure of a combination of Sip I terms, where each graph 
entering Sip I is amputated of one h t21 bond. We introduce now a 
recurrence hypothesis: let us suppose that for a configuration including 
m ~< mo groups the part of the graph which connects the subgraphs Gi is 
h~( ''~. We add a group described by the subgraph G,,,0+ 1 to a configuration 
including mo groups: this new group can be connected simply to one of the 
other ones by an h t2) bond, or we can change the preceding h Im~ in h t '~  ~) 
Therefore we have to choose between [h(2)(2)h("~)(2)] and h('~ 
since the superposition approximation leads to an underestimation of 
h(")(2), and since our recurrence hypothesis is satisfied for too=2,  we 
conclude that it is satisfied for all values of m. 

Then we get 

h~"l = h~")(2) * { GI,}(0Q} (49) 

Then, the value of h~ "~ can be estimated in terms of e and 4; for this we 
write hi ") in the form 

1-I { (50) 
i =  l ,m 

where Ypti~(o~) is the order of magnitude of the graph G,. including p(i) root 
points. Since Gi involves only the length scale a, we can determine Yp,)(a) 
from the dimension of the graph Gi. This is done easily by using the $3 
representation of G~. With the arguments developed above, we see that all 
the integral over the field points entering in the definition of G~ can be per- 
formed in a volume aa centered on Ri; the dimension of G~ is then obtained 
from the value of the integral of G~ over p(i) - 1 of the p(i) root points, per- 
formed in the volume ct d (the t-point is a field point) and then in order to 
get Y we divide the result by atP")-~)a. We see that ~ is the only relevant 
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length scale and we can determine the dimension of the involved integrals 
by using 0c instead of ~ as in Section 2. The dimension of G; is then that of 
h~p~,~+ 1~ divided by that of h ~2), since Gi is a graph of h ~p+ 11 (p root points 
plus the t-point) amputated of one h ~2) bond. We get 

yp(o(oc) = [HO,~i)+ ,)(~)] [H~2)(=) ] - ,  [oc~p(i)-,)a] --1 

= C[~ -~p")- 1~ ~]  (51) 

Finally, we get the following estimation for h] "~ in the case of a configura- 
tion of the n points which separates into m groups a distance 2 apart one 
from each other: 

h~")[ m ] = h~m)()-) f~ . . . .  )(0~) ~-h~m)(/~) 1--[ [(X - ( p ( / ) -  ]) dr 
i=  1,m 

= h~.,)(2)E~-~ . . . .  ~a~] (52) 

where we have introduced the function fr for convenience in the 
following. We emphasize that = holds for the dimensionless distance (0c/a), 
which means that h~2)(r) is of order 1 only for molecular distances; as a 
result, when n ~ m, since we are interested in very large distances, the func- 
tion introduced in (52) is always very small compared to 1. Let us denote 
rmax the largest distance in the set { ro. }. Therefore we find that, when n > 2, 
h~ ") is either comparable to h(Zl(rrnax) times a function very small compared 
to unity when there are only two groups, or very small compared to 
h(2)(rm.x) when there are more than two groups. 

4. DISCUSSION 

The main result of this work, which we now analyze, is given by 
Eq. (52). It provides an estimation of the total correlation function when all 
the distances are large, namely in the "algebraic" regime of h ~'), and when 
up to two length scales are involved. Because of this last point, it is a first 
attempt to go beyond the dimensional analysis. 

Now we exploit this result in order first to derive an equivalent of the 
GKS tS-l~ inequality, which reads in our case 

[ g(,,+ l) _g~,l]  ~> 0 (53) 

Following Eq. (5), the difference [ g ' +  l) gr can be written as 

[g~,,+l~_g~,,I]= Z [hl2~( i , n + l ) ] + h  ~'+') 
i =  1,n 

+ ~ {I-I [h'p'(i,,i= ..... ip)]} (54, 
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where the sum ZQ, runs over all the parti t ions Q' of the set ( 1, 2,..., n + 1) 
in distinct and nonover lapping subsets (i~, i 2 ..... ip), which cannot  be 
obtained from the set (1, 2 ..... n), and because we have isolated both h I"+~l 
and the sum of the h c2) terms, the products  in (54) include at least two 
factors [h(POh ~p'-)] with pl,p2>~2. Moreover ,  at least one of the subsets 
involved in each parti t ion Q' includes the point  (n + 1 ) because none of the 
partit ions Q' can be deduced from the set (1, 2 ..... n). 

Now we get an upper  bound for 1--[ [hcp)(il, i2 ..... ip)] .  By using 
Eq. (52), we know that  the leading terms of the sum ~Q, corresponds to 
the sum of the products  [h(Z)(rij) h(Z)(r,,k)] where n + 1 is one of the points 
(i,j, m, k); therefore the last term of (54) is majored according to 

{~l--[[h(')(i,, i~- ..... 'p)]}~Ch(2)(rmin) 2 [ hr  (55) 
i = l , / l  

where C is a constant,  and rmi . is the smallest distance between particles of  
the set (1, 2 ..... n + 1), which, in any case, is at least equal to a. Then, from 
(52) we know that  h ( '+  ~) is small compared  to h(2)(rrnax) since n + 1/> 3. As 
a result, we get 

[g(,,+t) g(,)]= ~, [h(2)(i ,n+l)]+.. .  (56) 
i =  l , n  

for any configuration of the n + 1 points, involving up to two length scales 
if all the distance are very large compared  to the molecular  length ~. 
Finally, because of the positive sign of the compressibili ty and because we 
expect a mono tonous  behavior  for hC2)(r >> a), 1~5) we have hC2)(r>~ot)>0 
and we conclude from (56) 

[ gO,, + i ) -  gO,,)] > 0 (57) 

It remains to determine the range of validity of  (57); in other words, 
we have to specify what  is a "large" distance or equivalently what  is the 
min imum value of 0t. We emphasize that  our  analysis, especially the estima- 
tion given in Eq. (51), relies upon the argument  that  we can estimate the 
value (in the sense of  its range) of  a graph G(1, 2 ..... p)  from its dimension 
when only one length scale is involved in the distances to., i,j= 1,p. This 
is used for subgraphs of h cp) and we thus have to verify that  we deal with 
a range of distances where the correct dimensional behavior  of  integrals of  
h ~p) is reached. We start  f rom Eq. (21) and we see that  we can deduce two 
regimes according on whether the first or the second term dominates.  In 
the f ramework of the algebraic regime of h ~p), Eq. (31a), we have 

pO(h(,,-1))/Op ~ h(,- 1) ~ (ro./~)(cr/~)-a, (58) 
( i , j )  
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If this term dominates, in the 1.h.s. of (21), we get 

f h ~'~ d[n] ~ [ (~l~)d--a~] h(,,-1) Z (rijl~) (59a) 
{i,j) 

which is easily seen to be in agreement with the dimensional behavior of 
the integral over n -  1 coordinates of h ~'). This means that in this case, the 
behavior of h ~ with respect to a dilatation of all the distances corresponds 
to its dimension. On the other hand, if the second term dominates, then we 
get 

f h ~') d[n]  ,~ [(~/g)d-2a,] h~,,- 1) (59b) 

and in contrast to the preceding case, this integral is not in agreement with 
the dimension of h (~, which means that the integral of h ~''~ on the n -  I 
coordinates performed in this range of distances is not indicative of the 
result for the integral performed in a volume C a, and that the behavior of 
h ~') with respect to a dilatation of all the distances cannot be obtained from 
its dimension. Clearly, then, (51) is no longer satisfied. Therefore our 
criterion is that  the distances are such that the derivative given by (56) is 
much larger than h ~ ' -~  and thus a satisfies 

~/~ >~ ( a/~)a~ (60) 

Notice that the second region, as can be seen from (59b), corresponds to 
the range of validity of the superposition approximation: n -  1 particles are 
in a "small" volume centered on ro and the main contribution to the 
integral over the nth one is obtained for large ro, , distances where h(")~ 
h(21(/'o,,) h" ' - l ) (1 ,  2 ..... n -  I). The volume in which the n -  1 particles are 
enclosed must be smaller that [~(a/~)d*] d. 

Finally, if we assume that the conformal invariance is satisfied by h c3~, 
then, given the corresponding result for h t3) (see Appendix B), namely that 
it is a monotonous function of all the distances, and because H t31 < 0  we 
get the equivalent of the GHS inequality, which reads 

ht31( l, 2, 3) < 0 (61) 

5. CONCLUSION 

In conclusion, we emphasize the following points. First, the present 
work takes place neither within framework of renormalization group 
theoryl:. 3.22. 23) nor within the renormalization theory of the field-theoretic 



Correlation Functions near Liquid-Gas Critical Point 1271 

approach to critical phenomena/4'  5) Indeed, our purpose is not to provide 
a way to deduce the critical behavior of fluids. Conversely, we have 
assumed the existence of a critical point and our starting point is on the 
one hand the phenomenological equation of state of the critical isotherm 
characterized by the critical exponent ~ and on the other hand the 
asymptotic form of the two-body correlation function and the associated 
Fisher critical exponent, q. The values 6 and r /are  assumed to be known. 
The purpose of this work was then to deduce the behavior of the n-body 
total correlation functions, which are both actual physical quantities (and 
not correlation functions deduced from an effective Landau-like 
Hamiltonian) and the usual tools for liquid-state physics. We emphasize 
that the correlations we deal with correspond to the spatial fluctuations of 
the actual density and therefore have a clear physical meaning. 

Concerning the GKS inequalities, the difference from the Ising model 
(or the ~4) theory is the following. The GKS inequalities are neither 
satisfied in all space nor for each thermodynamic state, as is the case for 
the Ising model, but only for large distances and in the close vicinity of the 
critical point. Moreover, they do not result from a simple convexity condi- 
tion as is the case in the Ising model. Therefore a careful analysis of the 
correlation functions must be performed after the critical equation of state 
has been stated. This analysis leads us to the estimation of the total n-body 
correlation function, Eq. (52), which can be considered as the important 
result of this work, the GKS inequalities being then a consequence of this 
estimation. Moreover, we had to consider two length scales in the distances 
involved in the set of points {ro. } and we found the minimum length scale 
for the GKS inequalities to be satisfied. This appears to be on attempt to 
go beyond the regime where the usual dimensional analysis is valid. 

A P P E N D I X  A 

In this appendix we analyze the representation of some graphs using 
only the node V t3), which is, moreover, replaced by its leading contribu- 
tion, c~ 3~. This is what we called in the text the "$3" representation. As an 
example, we have the graphs of h~ ''), where all the root points end h t-') 
bonds, which are connected to the e] 3~ function. An example is the $3 
representation of h ~5~ shown in Fig. 4. It is easy to see that the graphs of 
the $3 representation of h~ ''~ include exactly n -  2 functions c~ 3) and 2 n -  3 
functions h~2); in other words, these graphs can be built up using the func- 
tion s t3), defined as the convolution of a c~ 3) function with two h ~2) bonds, 
as displayed in Fig. 7, and a supernumerary h tz~ bond. One can check that 
the dimension of the S 3 representation of h ~'') (which is the dependence 
with respect to ~ of the integral of h t') over n - 1 coordinates) is the same 
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2 

Fig. 7. Representation of the s TM function. The hatched subgraph is a c TM function and the 
lines are h t21 bonds. 

as that of h "). Moreover  it is important  to notice that one constructs the 
$3 representation of  h ~') whatever the value of  n; this is not  the case if we 
consider, for instance, the $4 representation where the use of  only the node 
V t4) is not  sufficient to describe h c') for odd n. F rom the particular topol- 
ogy of  the $3 representation of  h t'), we can easily deduce that of  the graphs 
characterizing the groups of  localized points, denoted G~ in Section 3. 
Indeed, a group i including p(i) points localized in a volume ~a centered on 
R; is characterized by a graph G~ of h p(i)§ 1 amputated of  one h C2) bond; the 
$3 representation of  G~, denoted by S3(G;), is therefore built up from s t3~ 
functions only (this is shown in Fig. 8. The properties of  this S 3 representa- 
tion are similar to those of  the $3 representation of  he"): the dimension is 
conserved, and it can be constructed for each value of  p(i). Notice that 
when we deal with a group i of local ized points {kt,  k2 ..... kpti)} of the set 
{ 1, 2 ..... n } we consider only one length scale, ct, and then the dimension of  
the graph G,- is meaningful. Furthermore,  from Appendix B, knowledge of  
the three-body correlations and related integrals is sufficient to show that 
this is indeed so. Finally, let us consider the $3 representation of h t''~ for a 

3 

Fig. 8. Example in the $3 representation of a graph G i defined in section 3. Gi is connected 
to the rest of the graph via the unique "trailor" point t. The hatched subgraph is a c t3) func- 
tion and the lines are h ~2~ bonds. 
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set of points separated into p groups. When the graphs Gi of the groups are 
removed, the remaining graph which connects the groups together, say Kp, 
includes the above-mentioned supernumerary h ~2) bond since this is not 
used in the subgraphs G~. Then we recover in this particular case the fact 
that the subgraph depending on the largest length scale, and connecting the 
groups together, Kp, is nothing else than a graph of htp) in the $3 represen- 
tation, since Kp is built up from s ~3) functions and a supernumerary h (2) 

bond. 

A P P E N D I X  B. T H R E E - B O D Y  F U N C T I O N S  A C C O R D I N G  TO 
C O N F O R M A L  I N V A R I A N C E  

B1. Expressions of h (3) and c (3) 

We first deduce the three-body correlation functions c ~3) and h 13) using 
the conformal invariance hypothesis. This hypothesis is very likely to be 
satisfied since at the C.P. our system fulfils the necessary conditions given, 
for instance, by Cardy(~9): scale invariance, translational invariance, rota- 
tional invariance, and short-range interactions. The important property 
that we use is that three arbitrary points r~, r2, r 3 can be mapped by a con- 
formal transformation into three preassigned points r'l, r~_, r~. Then the 
explicit spatial dependence of a correlation function f3(r~, r2, r3) satisfying 
the conformal invariance is totally determined by the rescaling factors of 
the transformation since fa(r ' l ,r~,r~) is the same for any initial set 
(r] ,  rE, r3) and is thus a constant. Then, from refs. 19 and 20 we have 

f3(rl ,  r2, r3) = F3[ (r12) x' + x 2 - x 3  (r23)x2+x3-Xt(r13)x3+xl-:r --1 (B1) 

where the xi are the scaling exponents. In our case, f3 = c (3) or  h t3) is totally 
symmetric with respect to the permutations of the points and accordingly 
x~ =x2 =x3 =x .  Then we get the value of x from the transformation law 
of f3 through a global dilatation (corresponding to the global scale 
invariance) which is obtained from the dependence of the integral H t3) (or  
C t3)) with respect to x. We get x = d~ for h (3) and x =  d'r for c (3) and the 
final result is 

h t3) =H3(r12r13r23) -d~, c~3)= C3(r12r13r23) -d'~ (B2) 

We emphasize that the important result here is that the function F 3 is 
simply a dimensionless constant, which is then taken equal to 1. It is worth 
mentioning that this result can be obtained at least for the function h (3), 
from the Baxter equation relating the integral of h c3) over r3 to h t2), Eq. (1), 
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by exploiting the divergence of the integral at the C.P. without referring to 
the hypothesis of conformal invariance. We see therefore that this 
hypothesis is in agreement with the existence of the Baxter equation. 

B2. Expression of s (3) 

The $3 representation of a graph, where only the node V (3) is 
involved, necessitates two elements: the function h (2) and the function s t3), 
which is a convolution of a c (3) function with two h ~2~ bonds (see 
Appendix A). Here we analyze this function s t3) in the framework of con- 
formal invariance. We consider the function s(1, 2, 3) such that the point 
labeled 1 is the root point connected to the function c t3) (see Fig. 7). In 
order to deduce the function s TM we cannot use the preceding route, since 
this function is not totally symmetric with respect to the permutation of the 
points, and we must consider the behavior of the function s(1, 2, 3) with 
respect to a conformal transformation by using its integral form and then 
by imposing that s( 1, 2, 3) is invariant. 

We consider a special transformation characterized by an infinitesimal 
vector ~. The component l of the vector r, rz, is transformed into the 
component r~ of the vector r' according to 

r~ = rl + o~/r 2 -- 2(ct. r) r I (B3a) 

At order ct, the distance ru=  I r i - r j l  transforms according to 

I ~-" - rij( 1 -- ct(r~ + rj) ) (B3b) 

and the Jacobian of the transformation is 

d r ' = ( 1 -  2 (~ . r ) )d  d r = ( l  - 2d (~ . r )  + O(ctZ)) dr  (B3c) 

The function s is given by 

= f c(rli, fly, r O) h(ri2 ) h(r)3 ) dr i drj  s(1, 2, 3) 

and thus we get 

s(l ' ,  2', 3') =s(1, 2, 3) + f  c(rli, I'lj, rq) h(ri2) h(rj3) 

• ( - 2do~ �9 (r~ + rj)) dr~ drj 

f [t~C(rli, rlj, r U) h(ri2) h(rj3) + 

+ c(rli, rlj,  ro.) 6h(ri2) h( t )3)+ h(ri2) Oh(rj3) ] dri drj  (B4) 
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where fif(,'/j) means [ f ( r ~ ) - - f ( r i / ) ] ;  we have 

[ f ( r } )  - f(r0.) ] = (Of(ru)/Or o) &ij = rij(Of(ro)/Orij)( - ~ "  (ri + rj)) (B5) 

where we have used (B3b). F r o m  (B3b), and by using the form of h (2~ and 
of c TM, Eq. (B2), we get 

&(1, 2, 3) = s( 1, 2, 3)[d~or (r 1 + r2) + d;0r (r] + r3) 

+ (2d e - d ; )  ct. (r 3 + r2) ] 

= - s (  I, 2, 3)[  -d~c~-  (rx + r2) - d ~ t .  (rl + r3) 

+ ( d -  3de) ~. (r 3 + r2) ] (B6a) 

where we have used the relation d e, d~, and d. On the other hand, if the 
function s is invariant  under conformal  t ransformation,  we must  have (~9" 207 

&(1, 2, 3 ) =  --s(1, 2, 3) y '  [ro(Os(ro-)/Orij ) Ct. ( r i+  rj)] (B6b) 
1 <~i<j<~3 

From (B6a) and (B6b) we get 

r12( OS(l'12)/Or12 ) = r l3 ( Os( r l3)/Or l3 ) = -d'~ 
(B7) 

r 23( Os( r 23 )/Or 23 ) = d -  3d e 

and finally 

s( 1, 2, 3) = S(r23) d-3ar (r12r13)-(a-a*~ (B8) 

where S is a constant. 

B3. Properties of s TM 

In the dimensional analysis, s (3) behaves as st3)= ( 1 / ~ ) d + d ~ s  (3), where 
s ~3) represents the function s ~3) in which the lengths are in ( units. It is easy r 
to verify that  this result also can be obtained from the definition o f s  ~3) and 
the dimension of its ingredients. 

In the expression of s TM, the quanti ty d - 3 d §  is 
positive because ' in  Section 2.2 we established that r /<  ( 4 - d ) / 2 .  Thus, in 
the expression of s ~3) the numera tor  increases with r23; however, s (3) 
remains finite, as shown in the following limiting cases. For  a configuration 
in which r12,,~r13~,r23 then s(a),'~(l/r23) d+a~, it is notewor thy that  the 
exponent  is the same as the one in the dimensional analysis. Let us now 
consider configurations where two length scales are introduced. For  exam- 
ple, the case where r ~ 2 ~ r ] 3 ~  and r23 ~ct  with 0c<~, the dimensional 
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analysis, which does not take into account the constraint that 2 and 3 are 
close to each other, would give the above result s~3)~(1/~) a+d~. The 
correct result is St3),.~OCd-3d#~ -2ta-a#), which is used in Section 3.3. Note 
that this result is as though the constraint that 2 and 3 are close had the 
effect of forcing the field points of c TM to remain in a c~ a volume centered 
around root point 1. This is related to another configuration of interest, 
where this time rl3 ,~ r23 ~ ( and r12 ,~ 0t; the result is S(3)~, Ol.--d+dtk~ -2d'k. We 
find that this result is coherent with the rule given in Section 3.3 according 
to which the field points give the main contribution when integrated in the 
vicinity of the corresponding group, in this case root points 1 and 2. These 
examples clearly show that the dimensional analysis, as expected, does not 
give the correct bound in a configuration where there are two different 
length scales. 

B4. Integrals of S (3) 

In the estimation of the diagrams involved in the S 3 representation, we 
need to consider convolutions of s t3~ functions. The integration volumes for 
each field point of s TM can be judiciously partitioned when two length scales 
are involved; a and 2, with ct <~ 2, in a similar way to what has been pre- 
sented in Section 4.3 for the analysis of Fig. 5. We will take 2 ~ (, but the 
results can be generalized to any large 2. We give here the integral of s t3~ 
in the relevant cases. We define i(r,_3) by 

i (r23)=fs(1,2,3)dr~=f S[(rz3)a-3d~(r,2r~3)-'d-d§ (B9) 

We split the integration range into a volume cta and the remaining volume 
~a-o~a; the integral i(r23) will be performed over a volume V, which can be 
restricted to ad. In what follows I(x~,_, x~3, x23) is the integral i(r2~ ) written 
in reduced variables x ~ =  r~/oL or ro./~, such that x~ is bounded by 1; the 
choice for ~ or ~ is relative to whether the integration volume V is 
restricted to a a around root points 2 or 3. We make the assumption 
that the lower bound for x U, namely the a scale, introduces no singularity. 
We now examine different situations. 

(a) r23 ~ ~; V-- ~ a  0td: 

ia(r23) ~ $I(x,_3) ~-a~ ~ ~-a~ (B10) 

(b) r 2 3 , ~ ;  V = e  d centered on the point 2 (or the point 3): 

ib(r23) ~ S[(rl3/Oq r12/~, r23/~) 0~'1r -2ar 

�9 -'~'(Uo~) --'#~ (B l l )  
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(c) 

(d) 
and 3: 

r23 ~, ~; V =  c( d located at a distance ~ from both points 2 and 3: 

ic(r23) ~ SI(r  l3/~, r l2/(,  r23/~) Otd~ -d# 

~ --d#( ~/OC ) --d (B12) 

r23 ~ or; V= ot d centered in the neighborhood of both points 2 

(e) 

id(r23) ~ SI(rl3/OC,/'12/c/., 1"23/0t.) ~-d4, 

~ - a ~  

rE3 ,~ iX, V = ~d _ ~d: 

i~(r23) ~ SI(r23/~) o~d-- 3d#~--a+ 2d# 

.~ o~-~(  ~/o~ ) - ~  + ~ 

(B13) 

(B14) 

(f) /'23 ~ Ct; V= ct d centered at a distance ~ from 2 and 3: 

if(r23) ~ SI(r l3/~, r l2/~, r23/0c) o~2a-3ar 2a~ 

.~., ~- -dr  ~llOt.) -- 2 (d ' l 'd+)  (B15) 

Now, because of the convolution involving the various s (3) functions, the 
integration volumes are related to one another; the points attached to the 
h t2) bonds of an s (~1 function are possibly also attached to a c] 3) of another 
function. An element Q which is an element of the partition of the integra- 
tion volume then corresponds to a set of ii, i6 {a, b ..... f } ,  estimates. The 
estimation of $3 is then typically written 

$ 3 = ~  f I-I ii) (B16) 
Q i~{a,b,...,f} 

It is beyond the scope of this article to investigate the S 3 representation for 
any h c''~ and any'possible partition of the root points into group configura- 
tions. Let us point out that the interest of the $3 representation is that it 
is possible in this particular case to verify the rules given in Section 3.3. 
First, the leading contribution comes from integration of s ~3) performed in 
the vicinity of the corresponding group, as can be seen from i,. integrals (the 
largest one being id). Second, the leading graphs are the ones where the 
minimal number of s 13) functions are shared between different groups. 
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